Domain decomposition methods via boundary integral equations
نویسندگان
چکیده
Domain decomposition methods are designed to deal with coupled or transmission problems for partial differential equations. Since the original boundary value problem is replaced by local problems in substructures, domain decomposition methods are well suited for both parallelization and coupling of different discretization schemes. In general, the coupled problem is reduced to the Schur complement equation on the skeleton of the domain decomposition. Boundary integral equations are used to describe the local Steklov–Poincaré operators which are basic for the local Dirichlet–Neumann maps. Using different representations of the Steklov–Poincaré operators we formulate and analyze various boundary element methods employed in local discretization schemes. We give sufficient conditions for the global stability and derive corresponding a priori error estimates. For the solution of the resulting linear systems we describe appropriate iterative solution strategies using both local and global preconditioning techniques.
منابع مشابه
Estimation of PC-MRI Pressure Map Using Integral Form of Governing Equations and Spline Segments
In this paper, the boundary-based estimation of pressure distribution in the cardiovascular system is investigated using two dimensional flow images. The conventional methods of non-invasive estimation of pressure distribution in the cardiovascular flow domain use the differential form of governing equations. This study evaluates the advantages of using the integral form of the equations in the...
متن کاملEstimation of PC-MRI Pressure Map Using Integral Form of Governing Equations and Spline Segments
In this paper, the boundary-based estimation of pressure distribution in the cardiovascular system is investigated using two dimensional flow images. The conventional methods of non-invasive estimation of pressure distribution in the cardiovascular flow domain use the differential form of governing equations. This study evaluates the advantages of using the integral form of the equations in the...
متن کاملDUAL BOUNDARY ELEMENT ANALYSIS OF CRACKED PLATES
The dual boundary element method is formulated for the analysis of linear elastic cracked plates. The dual boundary integral equations of the method are the displacement and the traction equations. When these equations are simultaneously applied along the crack boundaries, general crack problems can be solved in a single-region formulation, with both crack boundaries discretized with discontinu...
متن کاملAn embedded boundary integral solver for the stokes equations
We present a new method for the solution of the Stokes equations. Our goal is to develop a robust and scalable methodology for two and three dimensional, moving-boundary, flow simulations. Our method is based on Anita Mayo’s method for the Poisson’s equation: “The Fast Solution of Poisson’s and the Biharmonic Equations on Irregular Regions”, SIAM J. Num. Anal., 21 (1984), pp. 285– 299. We embed...
متن کاملThe Collocation Method and the Splitting Extrapolation for the First Kind of Boundary Integral Equations on Polygonal Regions
In this paper, the collocation methods are used to solve the boundary integral equations of the first kind on the polygon. By means of Sidi’s periodic transformation and domain decomposition, the errors are proved to possess the multi-parameter asymptotic expansion at the interior point with the powers hi (i = 1, ..., d), which means that the approximations of higher accuracy and a posteriori e...
متن کامل